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Abstract  
This paper presents a convergence proof of CFO on the stability theory of discrete-time-linear 

system. It reveals the necessary convergent conditions of CFO. Stability condition limits the 

eigenvalues of motion equations inside the unit cycle in complex plane, and a corresponding 

convergence criterion was deduced related to the probes’ parameters. According to above criterion, a 

qualitative parameter analysis and a general strategy of selecting parameters of CFO is presented. 

Finally, a simple numerical experiment approved such strategy above completely.  

 

Keywords: Central force optimization (CFO), Global optimization, Proof of convergence, 

Parameter analysis, Gravitational force 

 

 

1. Introduction 

 

Till now various heuristic optimization algorithms have been proposed and can be divided into 

biological-inspired ones and physical-inspired ones [1]. Biological-inspired ones are applied in many 

problems [2]. However, the uncertainty of macro biological theories on a micro individual is evitable, 

such as randomness [3], which results in heavier cost [4]. Because of the characteristic of general and 

deterministic, physical-inspired optimization algorithms hit the hot pot recently [1, 4~8].  

Among many physical-inspired optimization algorithms, Central Force Optimization (CFO) is a 

novel optimization algorithm with many merits, for example, fast convergence, deterministic results 

and convenient to be applied [4]. Therefore CFO attracts researches’ attention since it was proposed at 

2007 and shows better performances than others [4]. 

Although CFO has been proved to be effective and convergent empirically, the convergence proof 

has not been seen yet. Using the stability theory to analyze the equations of CFO’s probes, the proof of 

convergence is presented that reveals the necessary convergent conditions, and a corresponding 

convergent criterion was deduced related to its parameters in this paper. Accordingly, a qualitative 

analysis on the trajectory in [9] is given. The direction of analysis and improvement of CFO is 

provided.  

The paper is organized as follows. CFO is described in section 2. The convergence proof is given 

in section 3. Section 4 carries a parameters’ analysis to explain the convergent trajectories and how to 

select parameters. In section 5, numerical experiments are carried out. Section 6 presents conclusions.  

 

2. CFO Algorithm 

 

Consider an optimization problem:  
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Max  f X ,  min max| d d dX x x x    , 1, , dd N  

CFO is an optimization method by depicting particles’ movements and particle’s mass is 

navigated by the metaphorical principle of Newton’s law.  A general framework is shown in Table 1. 

CFO has 3 procedures [4, 9]: (a) Initialization. (b) Acceleration Calculation. (c) Motion. Initial 

distribution is formed by deploying Np/Nd particles with distribution factor  [3]. Np denotes particles 

number. Initial conditions are 0. In Acceleration Calculation, the aggregate acceleration 
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jA  is an accelerate vector of particle k toward to particle p.  

, 1 , 1 , 1

1 1 2( , , , )
d

p p j p j p j

j NM f x x x  

   is the objective function value of particle p at j-1. 

 1, , tj N . G, α and β are user-defined.  

In Motion, particle- p will move from 1

p

jR  to
p

jR  according to Eq.(2) . 
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If some “fly” out, a necessary retrieving mechanism acts by Frep(in Table 1) [11].  

  More detailed information on CFO can be seen in [4, 9] 

 

Table 1. Description of CFO 

Step 1: Initialization A 

Set dN , minX , maxX , pN , tN , G ,  ,  ,   and repF ;  

Step 2: Initialization B 

Compute initial probe distribution X with increment  , initial fitness matrix M; 

Assign initial particle acceleration A; Set initial Frep 

Step 3: Evaluate earlier termination criterion or less than Nt 

If reach Nt, return to Step 2; If fulfill stop criterion, return Step 4 

Step 3.1: Compute probe position vectors 

Step 3.2: Retrieve errant particles 

Step 3.3: Compute fitness matrix of current particle distribution and finesses 

Step 3.4: Increment Frep 

Return Step 3 

Step 4: Stop and putout best solution have reached so far 

 

3. Convergence Analysis 
 

Without loss of generality, consider particle i arbitrarily and one-dimensional, i.e.Nd = 1. Assume 

the feasible region is always positive.  

Theorem 1. CFO’s motion is an ordinary difference equation in essence. 

Proof:  According to mass step function [3], define     | , 1, ,i k i pM k f X f X k N   .  
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Eq. (1) can be written as 
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Eq. (3) can be updated as      i i i iA j X j                                        (6) 

Combined Eq.(6) with Eq. (2), CFO system equations are obtained as ( 0i  is obvious.) 

   i i i iA j X j                                                           (7) 

      21
1

2
i i iX j X j A j t                                                 (8) 

Substitute Eq. (7) into Eq. (8),  the following equation is obtained.  

   2 21 1
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                                   (9) 

Because i and i are constant at each generation, Eq. (9) is an ordinary difference equation.   □ 

The characteristic equation of Eq. (9)  is: 
21

1 0
2

it                            (10) 

Where R . The stability condition of discrete-time-linear system is eigenvalues lie inside the unit 

cycle in the complex plane. The following theorem shows that Eq. (9) is convergent.  

Theorem 2. Given 0i  , if and only if ( 4 / ,0) (0, 4 / )i it     ,  

  , 0,1,X j j  converges to the limit 
best

iX . 

Proof.  According to Eq.(10), 21
1 1

2
it      .                                  (11) 

Thus        
2 21 1
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2 2

i it t                                         (12) 

Thus the stability condition becomes ( 4 / ,0) (0, 4 / )i it                         (13) 

Substitute Eq. (8) into Eq. (7), we have 
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Under stability condition Eq. (11), takes limits on both sides of Eq. (14), we have  
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To illustrate   , 0,1,X j j  converges to bestX , a limit   *lim , 1, ,i i p
j

X j X i N

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is defined based on stability condition and Eq. (9) can expressed accordingly as 
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Simplify Eq. (16), then 
*
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Substitute Eq. (4) and Eq. (5) into Eq. (17), the following equation is obtained. 
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Considering the feasible region being positive, we have 
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Define the number of elements in set Mi as NMi. Eq. (19) is simplified as  
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Thus 
*,k iX k M  reach the limit 

best

iX simultaneously, i.e.
* * *

1 2 i

best

NM iX X X X    . 

Otherwise, according to the Eq. (8),  lim 1 0i
j

A j


  , which is contradictory to Eq. (15).  

Thus  Eq. (20)  is written as      * *ln ln ln ,best

i k i iX X X k M                    (21) 

Thus   , 0,1,X j j  converges to limit 
best

iX                                   □ 

 

4. Parameters Analysis 

 

A qualitative analysis is carried out based on Theorem 2 to solve the left question in [9] and point 

out how to select Δt to enhance the performance. A diagram on θi -Δt according to Eq. (13) is drawn 

in Fig. 1. The region between stability limit is stable except Δt = 0 and the outer is unstable.  

Unstable region are divided into 

(1) 1  , then 0i   
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(2) 1   , then 4 / 4 /i it t       

(Unstable region E, F, emanate amplitude oscillate)  

Comparatively, stable region are divided into  

(1) 0 1  , then 2 / 2 /i it     (Stable region A, B, power decay)   

(2) 0  , then 2 / it    (Zero line, persist)  

(3) 1 0   , then 4 / 2 / 2 / 4 /i i i it t             

(Stable region C, D, attenuate amplitude oscillate)  

The remainders are two critical stable limits:  

(1) 1  , then 0i   

(2) 1   , then 4 / it    (Stability limit, equivalent amplitude oscillate)   
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Figure. 1. A diagram on θi -Δt 

For simplicity, consider a system with two particles. From Fig. 1, It can be seen clearly that when 

larger Δt is, smaller the stable region becomes. Therefore for a multimodal function optimization, larger 

Δt is helpful to search an unstable region to enhance the global search ability. While for a unimodal 

function, smaller Δt is desirable for rapid convergence. Also the necessary condition for CFO entering 

stable region is θi converges to zero, so α need to be set larger than β.  

Because θi is proportional to G, G is another key parameter for convergence. A strategy for 

electing G will be deduced based on Theorem 2 below with supporting experiments in section 5.  

   Considering definitions     max max minf X f X


   ,  min max minmin X X


   ,  

substitute Eq. (6) into Eq. (13), we have  
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If G is much larger, θi will become larger, particles will make emanating amplitude oscillating for 

global search, which is necessary at initial. If θi is near zero, particles will make power decaying for 

rapid convergence, and then particles will lose global searching ability later. Generally, we recommend 

G to be with bell-shaped distribution, not proposed by [10]. Initially, particles exploit entirely the 

information obtained to converge with a lower G, and then expand for a global landscape by increasing 

G for better. At last, particles converge to the global optima after completing adaptive global search. 

The experiments with varying G are shown in section 5.   

 

5. Numerical Experiments 
 

The varying G is investigated by four benchmark functions with 2 variables [11] in Table 2. Differ 

from scholastic algorithms, CFO gets a deterministic and accurate result under predefined parameters 

no matter how many times [4, 9]. Total particles are 2≤Np≤15 with the number of particles being 

increased 1 each run.  and Frep are increased by 0.06 with the initial value being 0.06. G is set by the 

upper bound of Eq. (22).Nt  = 1000, α, β =2. 

 

Table 2. Test functions and Performance of CFO 

Function Name 
Search 

range 

Maximum 

(best) 
CFO (best) 
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30,30  0 -6.1001e-029 

 3( ) max ,1i
i

F x x i n   
 

Schwefel2.21  
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100,100  0 -1.2163e-015 

 
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4

1

( ) 0.5
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i
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F x x

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Step  
2

100,100  0 -2.4652e-030 

 

In Fig.2 vertical axis is best function value in right column, left is G. Horizontal axes are the 

number of iterative times. In Fig. 2, particles exploit the information obtained to converge rapidly with 

a lower G. If CFO converges close to optima, the population’s diversity decreases with a larger G; it 

will promote CFO’s particles to search new space globally. We recommend that G can be adjusted by 

bell-shaped distribution. However, the elitist preservation is inherent in CFO described in section 2, so 

particles will converge to the best global optima after completing such adaptive global search. Table 2 

presents the results obtained by CFO. 
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Figure. 2. Results of CFO on F1-F4 

 

6. Conclusions  

 

CFO algorithm is a novel deterministic nature heuristic optimization algorithm. A convergence 

proof of it reveals the necessary convergent conditions under which it is guaranteed to converge to the 

optima. Thus, a comprehensive parameter analysis with G and Δt is carried out. Based on 

discrete-time-linear system theory, we give a qualitative analysis of θi -Δt and explain the left question 

in [9]. It directs how to choose proper parameters of CFO. Finally, a simple numerical experiment 

approves such strategy on G above completely.  

Besides, the gravitational metaphor is fascinating. There are many other effects such as dark 

energy, black hole or supernova, which may implicate global optima. How to simplify principles of 

them to propose new physical-inspired optimization algorithms is significant. 
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